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INTREJCTION

The development of the techniques and application of electromagnetic waves
in the microwave region is progressing towards the use of higher frequencies.

The physical size of the transmission elements employed at present is already

of an order of magnitude comparable with a wavelength. For a further increase

in operating frequency one could, of course, further reduce the sizes of the
transmission elements. However, one would then be faced with difficult prob.-
les of production due to tolerance requirements, From a practical standpoint,

the sizes of the transmission elements must be in the realm of easy machining
and production. These considerations favor th, use of transmission elements
whose sizes are large in comparison with a wavelength. Because of that the in-

terest in such transmission systems has increased in recent years. Relatively
little is known about such transmission elements. The present investigation
concerns itself with such transmission elements which., as a results of the large
size-to-wavelength ratios, may propagate several modes.

It is well known that in finite regions, or in waveguides9 the electromag-
netic field can be described in terms of a discrete set of characteristic

modese () 3 or elementary waves. Each one of these modes for a loss-free guide
has an individual propagation constant which is either a real or imaginary

function of the geometry and the dimensions of finite region. Up to the pre-
sent, most of the applications, and therefore the analysis of propagation,
have limited themselves to such dimensions that only one of the inflnite number
of possible characteristic modes has a real propagation constant(2 . All other

modes have imaginary propagation constants, and therefore within a certain dis-
tance from their source attenuate to a negligible magnitude. Under these con-
ditions the waveguide could propagate only one mode. For this situation it has
been shown that there is a complete analogy between the single mode guide and

the standard transmission line 3 4 . This analogy has been ex,remely useful,
particularly from the engineering point of view, as it gives an insight into

the wavegu-ida based on the wide knowledge of phenomena in the usual transmission

lines. The effect of discontinuities in a waveguide can then be considered in

light of the known effect of an equivalent localized impedance ( 4 ) on the trans-

mission line.

It is worth pointing out that waveguides which propagate several modes,I! so-called multimode waveguides, have various other applications beside allow-



ing an increase in the operating frequencies. They offer wide band transmis-

sion system, (5 ) possibility of multiplex operation in a single waveguide,

4mode mixing devices, and associated control of the illumination of horn aper-

tures, etc. In the present work we do not discuss these applications which

offer a wide and diverse field for research. We limit vrselves to a particu-

lar problem which at the moment is of great practical and theoretical interest.

A basic property of the characteristic modes in a uniform cylindrical

waveguide is that of orthogonality; hence there is no energy interchange be-

tween the modes (6) . A uniform waveguide allowing the propagation of several

modes would then act like a set of independent trssmission lines ( 2 ) bt in

the region of a discontinuity in the waveguide, the orthogonality of the modes

breaks down. In the region of the obstacle, then there would be an interac-

tion between the modes, which would appear as cross coupling of the otherwise

different and independent transmission lines.

The problem of propagation in. a waveguide is basically a field problem
and, as such, the scattering of waves is the physical aspect which underlines

the consideration of an obstacle. Having determined the s cattering properties

fi of an obstacle, we can then look for other representations which would have

advantages for specific considerations. It is questionable whether the repre-

sentation of a multimode guide by equavalent transmission lines and obstacles

by equivalent localized impedance network has the same merits as in the case

of a single mode guide. The theory of multiple transmission lines, coupled by

localized multiple networks is far from being highly developed and widely

known ( 7 ) . Nevertheless, the engineer is used to thinking in terms of circuits
and impedances, and such a representation might facilitate the formulation of

a physical piture of the phenomena involved. With this in mind,, the basis for

the equivalent circuit representation will be considered, and application will

be made to the particular problem of a slot radiator in a multimode guide.

In considering the problem of a general obstacle we limit ourselves to

general considerations of the scattering matrix. Assuming that we know the

scattering matrix, we can investigate some of its properties on the basis of

general laws that we know about the fields. The determination of the scatter-

ing matrix itself involves the solution of the boundary value problem represent-

ed by the waveguide with the obstacle in it.

These boundary values problems in most cases are rather tedious. In partic

ular, we are actually faced with two problems
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a) Given a certain source distribution over the obstAcle, what would be the

fields set up by it, that would satisfy Maxwell's equations and the prescrib-

ed boundary conditions; b) Given a certain fik!d propagating in the wave-

guide, what would be the induced sources on the obstacle, In general, we are

given a certain incident field, and to find the effect of a discontinuity we

have to determine first the induced sources, and then derive the scattered

field produced by these induced sources

We consider in detail the problem of the slot radiator in a multimode

'aaveguide. The effort involved in solving the above mentioned two boundary

value problems is compensated by the wide applications and advantages of

slot radiators. In this work an approximate solution to both of these prob-

lems is presented. It is shown how to obtain both the amplitude and the dis-

tribution of the induced voltage in the slot as a function of the exciting

field in the guide and the slot geoaetry. This step in the theory is ex-

tremely important as it facilitates the solution of a great many problems as-

sociated with slots. In the single mode guide it has been possible to cir-

cumvent solving this aspect of the problem by making judicial assumptions- 6 )

in order to simplify the specific problem. The amplitude of the induced volt-

age as a function of the exciting field has not been determined explicitly.

For the case of a single mode guide one could circumvent it by the use of an

energy balance relation( 6 ) . Although in Stevenson's work( 9 ) an expression

is given for the amplitude, it involves an infinite series which is difficult

to evaluate.

The energy balance relation employed in the single mode guide theory in2-

volves a knowledge of the power radiated by the slot 9 ) . To determine that,

we must know, besides the induced voltage which can be eliminated in the sin-

gle mode case, the radiation resistance. For the radiation resistance the

usual procedure has been to employ the external impedance of the slot. This

impedance relates the voltage across the slot to the complex power in the ex-

terior region. Under the assumption that the slot is in an infinite perfect-

37 conducting plane this impedance can be evaluated for a given Etang in the

slot. There are several ways to do this and they have been discussed in the

literature (21 ) . Often the value employed is the one obtained by the applica-

tion bf the Babinet Principle (l ). For a slot in the wall of a waveguide,

this value is then multiplied by a factor of two on the basis of a physical

argument. This argument states that, since the waveguide limits the radia-

tion to one direction, the radiated power will be doubled.



Coiptations on the basis of the above value lead to a rather crude approxi-

mation. There is a disagreement of about 35 percent between the theoretical re-

sults and experimental data( 8 ) . This is hardly surprising as this procedure

neglects the different nature of the fields inside the waveguide. These fields

have a specific and definitely different nature than the fields behind a screen

in free space. If these assumptions are crude approximations in the case of a

single made guide, they would be worse in the case of a multimode guide with

its more complex structure of fields. Further, in such a multimode guidep even

if me would be satisfied with- this procedure., the circumvention of the requir-

ed knowledge of the amplitude of the induced source is probably impossible.

It is evident therefore that a better approximation is definitely needed. The

theory should also provide an answer to the induced voltage problem.

In this work. an analytical method developed for wie antennas-(I ) has been

extended and applied to the slot problem. The method is in principal similar

to the one outlined in Stevensci_'s ( 9 ) work,, but it yields answers in closed

form directly applicable. In fact, the results are applied to the multimode

guide and give very satisfactory agreement with experimental data. We consider

the physical difference between the far zone. fields of a slot in an infinite

plane, and a slot in the wall of a waveguide. The far zone fields of a slot

in an infinite plane satisfy Samrfield's radiation conditions on both sides

of the slot. This tells us that the field amplitudes go to zero as the obser-

vation point moves out to infinity. In fact, it prescribes how fast the fields

have to go to zero. For ' "e case of a slot in the wall of a waveguide this is

true only for the outside region; inside thewaveguide the fields do not de-

crease in amplitude. The radiation condition on the fields is that there will

be no reflected waves coming from infinity. The far zone field is just the sum

of all the freely propagating modes in the waveguide. We present, therefore,

such a description where we can take account of this physical information

directly.

It has been customary in the analysis of slots(6' 9 ) to assume that the out-

side wall of the waveguide forms part of an infinite perfectly conducting plane.

This assumption may be one of the reasons for the discrepancy between the theo-

retical and experimental results. In the present work this same assumption is

made, but the theoretical approximation it involves is dicectly evident. This

point is further discussed in Chapter IV of the text.



Cutlid below is the approx-iton method to be folloed here. e em-

ploy asymptotic approximations for Green's functions in the outside and inside

regions. In terms of these approximated Green's functions we express the scat-

tered fields in both regions. To match the fields across the slot we apply

the boundary conditicns. This leads to an integro-differential equation for

the induced sources. From this equation we get a function which is analogous

to an admittance function. An approximate evaluation of this rather compli-

cated function is done. it yields as its major part a value that corresponds

to external impedance obtained from Babinet's Principle or otherwise. We also

get a second term which can be looked upon as a correction term, corresponding

to the internal impedance. This correction term, as should be expected, is de-

termined by the freely propagating modes that compose the far-zone field. It

is interesting to note that, applying the value of the radiation impedance com-

puted here to the case of a single mode guide gives good agreement with experi-

_mental data.
-On the basis of the computed induced voltage in the slot, we solve the

second part of the boundary value problem. This involves finding the scatter-

ing matrix in the multimode guide, which is done by applying the Lorentz theo-
rem in a fashion simllar to the one outlined in Silver's book (6 )  The exten-

___ sion of this to the multimode guide presents no serious difficulties. Finally

the theoretical values are compared with experimental measurements and very

___ good agreement is observed.

Mary of the experimental resualts on the scattering of a slot in a rectangu-

lar waveguide propagating TEIO and T 2 modes, which are used for compar!ion,

were measured in the University of California Anterma Laboratory by W. Kunmer

before this theoretical work was begun. The writer also took same additional
data, using the experimental methods Vor the excitation and seperation of TB1

and TF20 modes worked out by Kumer,



CHAPTER I

GEM CCIUSJD ATIMtS OF OBSTACLES AND DISCONTINWITIES

We confine the present discussion to waveguides of arbitrary, but uniform

cross section. The guide walls are assumed to be perfectly conducting, and

the interior of the guide is filled with a lossless medium of dielectric con-

stant and permeability. Under these conditions, one finds that the solution

of Maxwell's equations can be presented by a set of transverse modes of two

kinds. Fof- one, 3 * 0 and for the other, H - 0 and they are called trans-
z 6

verse electric (TE) and transverse magnetic (TM) respectively/6). For

TZ modes

UP I and

where U(xy) is a solution of the differential equation

Vt ~ ~ ~ ,, U -- K,,,n1':

and

I;Iare the characteristic values associated with the set of orthonormal



e*genfunctions Up(xy) corresponding to the cross section of the guide. Their
determination allows for a multiplicative constant, which we shafl choose so as

£to obtain a convenient normalization. We can treat in a similar manner the TV

modes(6)
If ve normaiA.ze all the modes so that the power flow P across a cross see-

tion of the guide is unity we have

Pu'ifJ R. (tX~j). do' 1 11k

Substituting from (1.1) and (1.2) for the propagating modes tm 3j we find

P~ ~~~~P P1 Re #/)xN]d

we find

hence

____(1.6)

"~"A,,7 ~mn

as the eigenfunctions are noralized so that

J J(vu)a =

Lot us denote now waves propagating to the right and left with a superscrip

. m -7-o



of ()and ()respective~y

to right to left

+. +. +

+_- + (7)Hi 90 (x )e'- = _ Hi' i X Y)e -_

ftery field in the waveguide can be represented as a linear ccubination

of these orthonorial base vectors-ei and hi.

For the TE modes the vector functions I (xy) and (P (3Rr) are given be-

low explicitl Y.
+ 

+
i

a' y Ix' &J/x - )

Suppose we have an incident wave coming from infinity in region 1 (Fig. 1,

page 69) and an obstacle at w - 0 of known scattering properties, We denote
by S.R al the Amplitude of the kth mode in region 2 due to the ith mode of
the1amplitude a, incident on the obstacle in region 1. This means that
for exmple is the scattering coeficient giving the transfer of energy from

left to right of obstacle. If a wave of mode i will be incident on the ob-

stacle in both regions 1 and 2 with amplitude a.~rsetiey h
fieldt due to it vill be for t < 0

!'.,-



E(x Yz) czt!e- +Zsae d2a +

Kai Kl

&M for w>O0

i! E.'(o yz z ge 9 SK ,.+ ,S a

I.K-

u '  ' "  a2 ---''LL LK 8 ~~.K ae

Toe obtain a similar expression for Iii except and h7 replacesf e ,.

In the case of an sbitrary incident field the total fieldill be the
a=m of the contributions of all the modes in the incident field, We can write th
for a<O0

F-,(cYT-) 2,C + ( iCL + , C1 .i K

16,I

a for z>O

dL+Z aekZ:'a~7



and siml. .e:essions for He
Since me can also describe the total fields in ters of the o'thonoMVA

bam vectors ej hi we can wrte

- x ' - h,

! L "

'(xyZ) L t4 -1. b

acpsing (1.13) and (1.l1) to (1.11) and (1.32) we get

,0



e aL +~ -Iic

Upon changing the order of numbering so that index 2 on. top starts after index
N on botta, where N is the number of propagating modes we can write in matrix

fom

(B) - (S) (A) (1.16)

Where (B) and (A) are the matrices of the reflected and incident amplitudes

respectively. Therefore by definition(2) (S) is the scattering matrix. We
investigate now the properties of the element S, of this matrix.

To investigate the properties of Sik we consider a region that includes'

the obstacle and is bounded by the inner walls, and two cross section at
s = <' 0 and z > 0. Since we consider a source-free region, the diver-

7 gence of the field vectors is zero. Consider two fields B , H(m)ad E (n)

of the same frequency, that satisfy Ibwelt's equations. Then we can apply the

Lorentr theorem which states

i • / .ff(-x - ' - (/' xh')'2idu' 0 O.t

In this region we apply the theorem to two fields due to particimlar modes

set up in particular ways to give the desired relationships between the elements

of the aattering matrix (S).

N
- -1 --



Consider first the field due to mode 'im' of unit amplitude incident from

left and mode 'n' of unit amplitude incident'from right, and express these fields

by expressions similar to (1.ii) and (.12). Then substitute the above in (1.17)

and make use of the normalization and orthogonality properties of the eigenvec-

t~on e. and h.to obtain

(Sain -nr Jjf )4- - L-nd ~ (.8

d Ils

We consider now three general cases.

Case a - Lossless obstacles (perfectly conducting) in a closed waveguide.

In this case the boundary conditions on 2(m)H( m ) a E(n)H ( n )

n x 1 0
- - (1.19)_ _-

n * E 0

tell us immediately that the integral in (1.18) vanishes. Hence S2- 1

Case b - Lossy obstacles (dielectrics etc.) in a closed waveguide.

In this case we change our volume and surface integration. The integrals

over the perfectly conducting part of the wall vanish as in case a, and we are

left with an integral over outer surface of obstacle. e apply the sam theo-

rem to the volume of the obstacle. The surface of integration will now be the

inner surface of the obstacle, see Fig. 2, page M We have then

(t'ir Y" -6 AK)4?1= (1.20)
/ lone' Surfece

and the integral over inner surface vanishes. Now, since in expiession (1.20)

only the tangential component of 2 and H contribute, and by the boundary con-

ditions we know that the tangential components go over continuously across the

boundary, we have

- F tide (1.21)

-22-



and therefore we are left with

21 (1.22)

i in this case also.

Case c - Radiating Obstacles - Slots in Waveguide Tall

In tlhs case, applying t" e theorem, we will be left with and integral

over inner boundary of the slot.

We use now a similar technique to the one used in case b. We apply the

Lorents theore to the outside region, see Fig. 3 page W We have now

Ao4r

~~~~,0,,, -ec ,e -34 6 -ora

As in case a, over G tie integral goes to zero due to conditions (1.19). We

consider now the case where the Radius of the sphere I goes to infinity.

and as Fisa canbination of the radiation fields due to the respective modes,

it will satisfy the Smrfeld radiation conditions. We obtain then

and consequently



"C4tirefjr (1.26)

By the sam argument about the continuity of the tangential coqpomt as in

case b, we see that

o (1.27)

hence we conclude the symmetry of the respective elements of (S) for any general

obstacle,

Applying the same argument as outlined in deriving (1.18), to the field due

to mode m and n both incident from either left or right,, we get the requir-

ed relation for all the necessary. elements. This establishes the symmetry prop-

ertie of the scattering matrix S.

For lossless obstacles we can also show that the matrix (s) will be uni-

taX7 (2). That in

Kai (1.28)

where

SVL. 0 Fop. L

F~OR VL

This can be done by applying the theorem of conservation of energy, Expressing

the fields due to &V particular mode by expressions similar to (1.1.) and

(1.2) and substitutimg in the expressions for Poynting'a vector, we obtain the

desired result.

- 14 -



BJIVAIN T R SENTATION:

If we are to look upon the waveguide as a set of transmission lines, we

must be able to relresent the discontinuity by the impedmice matrix (Z), where

(Z) relates the equivalent voltages and currente as described in the literature -

thr ough Chm's lar, (V) -(Z) (I). Since the system is bilateral, linear and
isotropic, the matrix Z will have to be symetrical, i.e., Zi- bio if

(8) is the scattering matrix then the impedance matrix can be given b52)

-1Z (a +,' - s(Co.,s)) (.

It can be readily shown* that if Sik -Ski then Z k = k and conversely.

The symmetry of (S) has been proven above for any arbitrary kind of ob-

stacle. This establishes, then, the validity of representing a multimode wave-

guide x.th discontinuities by a system of transmission lines with certain coup-

ling netwrnl eer twen +he 11 nes

To find the equivalent representation we have to find the matrix (S).

This involves solving the boundary value problem. Then frm (S) and (1.29) we

obtain the matrix (Z). We proceed now to the solution of the problem of an

obstacle in the form of a narrow slot radiator in a cylindrical waveguide.

*Write I - L-M, post multiply by M, use symmetry of L and M to obtain symmetry

of 1.

t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~1 -__________ _____________



CHAPTR II

T IRUXC SOURCXS

To compute the voltage induced in a slot cut in the wall of a waveguide

we have to consider two different regions. One is the inside of the waveguide

and the other is the external space, bounded by the outer walls of the wave-

guide and a sphere at infinity. The slot is common to both regions, and the

solutions for both regions have to be matched in the slot.

Starting out with an arbitrary distribuition of electric field in the slot,

we determine the vector potential of this source in both the outsida and inside

regions. The vector potential is expressed in terms of Green's functions for

the two regions. For these functions we employ asymptotic approximations dis-

cussed in Chapter IV. Having determined the vector potential we can find the

associated induced magnetic fields in the two regions. The expression for the

fields will depend, of course, on the electric field in the slot. Applying

the b~mdary condition on the continuity of the tangential component of the

magnetic field across the slot, we get a condition a the aroita._r "sources"
in the slot. This condition determines the proper induced sources as a func-

tion of the geometry of the slot, waveguide, and the incident field, The in-

cident field comes in, as the tangential component of the magnetic field inside

is the sum of the induced (scattered) and incident fields.

FPORMUATION OF PROBLEM

Consider a cylindrical waveguide and a slot cut in the wa:Ll. If the slot
perturbs the current distribution that would exist on the wall of the guide for
a certain given electromagnetic field inside the waveguide there will be a leak-

age of the inside field to the outside. We then say that there is radiation
through the slot in the wall. To determine the radiation of the slot a basic
problem is that of finding the field excited in the slot, given the fields in

the enclosed region before the slot was cut out. Let us consider a slot in the

top wall of rectangular guide that is cut parallel to the z direction. The
* slot and the coordinates are shown in Fig. 4. In formulating the problem, we

follm the procedure of Stevenson (9 )

We have to consider two regions, one inside the perfect conductor, and one
outside. Assuming a time dependance of the form ej t , and that the two regi

-16 -
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I

Ma filled with the s e dielectric material, we will hiave for both regions

-vrx E-

V x H E(2.)

where E and H are the electric and magnetic field vectors respectively.

As there are no sources in the region we also have

.E-= 0

V. H =O

If we take the curl of the second equation in (2.1) we have

By (2.a) and (2.1) this reduces to

7 H H (2.3)

where

TLt us now consider a rectangular wavegiide, in which we have a system of

rectangular coordinates (x,y,z), where the z coordinate is parallel to the gen-

erating line of the cylinder. For the z component of the magnetic field

-17-



In order to be able to solve- this differential equation we have to find the

bounlwry conditions for %z . Frcm Iiell's equation (2.1) we have

C) EVi

H_____ __ _(2x

and

Iy w,4 Tx'y- yp-(2 .5a)

Since in a similar manner to that used in deriving (2 3) we can show that

V Ef QOE O (2 .3a)

we have

a ,
- ((a,.6Ex -5

and substitution in (2.5a) gives us

+ ,, + )E 4K+ )EY)I (2:.6a)

which can be written as-

_).- W a Z + )E + - V, (g-

-18 -



Thus, 2 the boundaries of the region the s Ccciponent of the magnetic field

wil satisfy the condition

14zz
R . ( ~ + Z ) + Ex (2.?)

It is evident that in our coordinatev NY is the normal derivative of this

coponent of the ipgnetic field, On a perfect conductor, the tangential com-

ponents of 2 are zero. Therefore Ex  and % are zero on thewalls and
) - 0 everywhere on the, walls except in the slot itself.

By a well known relation in the theory of Green's functions. , the dif-

ferential equation for N(2.), with the boundary c6nditions (2-.7), can be

soled in the folliring form

B y repeated integration by parts, this can be transformed to give

C X(2 .9 )

In conection with this point it may be W rth pointing out that in the case of

waveguide of arbitrary shapes (not cylindrical) we would have to use dyadic
Green functions to describe the fields due to sources.. This is described in a
paper by H. Lavine and J. Schwinger published by the symposium on electromag-
netic theory (1950). As was pointed out to the author by Prof. S. Silver, this
in due to the fact that the boundary conditions are then neither of the Dirichlel
type nor of the Neaman type, but a cmbination of the two, However, in a cylin-
drical waveguide we can destribq jthe vector fields in terms of two Green's func-
tions, as was done by Stevensonk9 ). In this particular case one obtains-bounda
conditions for Is and Hz  as given in Stevenson's paper, formulae (3), (4) ak
(5). When we limit ourselves to $lots that are pa ral lel to the generating line
of the cylinder, as we have done here, only a Neuaman kind of Green function is
necessary, as we have currents in the z direction only. The author wishes to
thank Prof. M. Schiffer for hin help in clarifying these points.

-19-



The Greens- function G(P,P) should satisfy the folloing:

I a) The homogeneous wave equation except at a single point, P p1.

b) radiation conditions at large distances,

c) boundary conditions on walls of conductors in the relevant (2.10)
geometry, i.eo 0 Dd) have a singularity of the type m when the point of

Observation coverges on the source point (lim. R > 0).

Ary function G(P,P') that will satisfy all the above mentioned condi-

tions will be a perfectly good Green's function when multiplied by the prop-

er normalization factor. Further, all the field expressions are linear;

.therefore, we can break up the function G into linear combinations. In

particular we can put

G(PP') - G (P,P') + g(PP') (2.11)I

If GI(PP') is known, being the Green's function for some known simple geome

try, then the conditions for the determination of g(P,P') are such as to make

G(P,P') satisfy all conditions (2.10) in the region of interest. For free

space divided into two half spaces by a perfectly conducting screen we know

the Green's function rigorously. We shall use this function, which is given

by

I e- j kR

as the function G, (PP') in (Z.11).

This function satisfies condition (2.10) ta' and 'd'. We are interest-

ed in finding the Green's function in two different regions; the region of

space constituting the outside of' the waveguide and the region of space in-

side it. For both regions we should determine the functions g(P,P), but

this in itself is a considerable task, In Chapter IV we shall discuss some

approximations for these functions.
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THE ?=IONR I

For the inside region we write

...L.(a.33)
G(P, P') z ar R + L(Pj-P')(23)

where gi (P,P) is to be a function that satisfies condition (2.1Oa), is regu-! - lar everywhere, and is selected so as to have G(P,P t ) satisfy the r adiation
conditions inside, (see introduction), and = on the perfectly con-

ducting wa~ls. In terms of the Green's function we can. by (@.9) write

(PYR - )- e

(2.14)

where the surface of integration in (2.14) is only over the surface of the slot.

4 Let us now introduce a local system of coordinates in. the slot, (see Fig. 5)

and cosider the electric field components in the sob. In (2.14) Etjrxz) will

corrspond to Eq ("'?, X) and (tftz) iYLU correspond to Z, ~ W
introduce now the following assumption about the slott

a) the wavelength is large in comparison with the sidth, 26 <<

b) The slot is narrow in comparison with its length, d;dI

With these assumptions we can safely assume that the variation of B a-
cross the slot will nab be appreciable. Becauseof continuity of Z 3 and the

fact that at the edges this component disappears., ErT (t - and 2d < 19

we neg t in cnparis th I . It, is to be noted that these

arguments are on the basis of physical plausibility. Theoretically this is an

asmption. It sbould be noted that it is analogous to the approximations made

I- 21 -



in the thin wire antenna theory I ) concerning the current over the cross sec-

tion of the wire.

On the basis of this assumption and the local coordinates mrcan rewrite

(2.14) and get

,.,.b ,.. RL e.
£ dot

In the two integrals in (2.14a), the field component E'((, ) is

assumed to be continuous and to possess continuous derivative, so we can change

the order of integration and differentiation, and write

,A (2.15)

where
edeR

OP) dj d r(2.16)

We proceed now to transform A into a form that wrill lead to a formula.

tion that can be solved. This step involves making some approximations, and it

is indeed dangerous to approximate before a differentiation'. However, the ap-

proximations that we have to make are with respect to the dependance on the x

coordinate, whereas the di: erentiation is with respect to the z coordinate.

Nevertheless, the v alidity f the approximations should be checked. One way,
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of course, is to see that the results are consistent, and how well they de-

scTibe the known physical phenomena.

It may be worth pointing ont that by considering an equivalent magnetic

current on the slot ( 12 ) and introducing a magnetic vector potential, we are

led to a result similar to (2.15). In doing that we have to make similar ap-
proximations to those described above, and we find then that A of (2.16) is

the ccmponent of the vector potential.
Having assumed a norrow slot so that 2d<< ) and 2d << 2,e, assume

that +h vairiation of the Cheen's functions with? is negligible in compari-

son to the variation with *We can separate the integration with respect

too? and3 , and write

where V(T is by definition the voltage across the slot

I
Let us now separate out the principal part of the first integral in ex-

pression (2.16). As we are interested in the fields in the slot itself, we

consider observation points in the slot. For these points we can write

(2.39)

, -23-



Since we are interested in the fields in the slot itself we have to consid-

er points P very close to P'. At P = PI we have a point of singularity.

Separating to exclude the singularity we write

/e

where C > 0 and arbitrarily small.

NOW for 5 ( me have from (2.19)

dj=

iI

fo >0

"- -yede , (2.2o,)

We get therefore the principal part of L
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Ae I
-ee

::; ' ,and integrating A' by parts we find

eJ4e

-e

I .1' 4 (Oe C)

Introducing the boundary conditions at the edges V(_ e) =0., and R a t

-by (2.19), we can rewrite equation (2.22),and get, after cbag-
ing ban c the variable of integratio fr to the following

i25

A:fr fA 7 ) ,eKee~s~



+ lie

(2.22)

From (2.19) LE so we get

A' (2.23)

Since the first term on the right side of (2.23) is for values in the plane

= , and of that in the slot itself, (i.e. y=b) the values of are

very nearly equal to *. Further, we have agreed to neglet terms of order

2d and as the maximum value of is - 2d we can equate e -rto

unity with an error at the most of 2 << 1. We find therefore

-I f (2.a3 )

and

Let us now multiply this expression by a function/(An) and integratA
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again from -d to 4d with resp3ect to 7. Also impose the folaring codition

/(') -

dj

ti (2.t)ti

is directly related to the electrostatic potntial over a slot in an infinitely

thin screen I X .' Hence it relates to the case of infinitely thin walls of the
guide. Other functions arn s ossible, such as for the case of finite

thickness, one which relates to the corresponding electrostatic problem. We

get then

S7r (2-.26)

where

/I- 7 -.



and

We find therefore, by substituting (2.26) in (2-1X)

Zri (T 65(2.27)

in terms of the local coordinates. (See Fig. 5).

This is the field set up inside the waveguide over the slot by an arbitrary

voltage distribution.

THU OUTSIDE REGION

let us consider now the region outside. The Green's function will be
-J kI2

(PP' 2--+ e/P P'

(2.28)

raj 8
The function -- satisfies conditions (2.10) 'at 'bI and Idt. The

function ge(P,P') has to be determined so that it satisfies conditioi (2.10)
'at and makes G(P,P') satisfy condition (2,10) tct on outer walls of wave-

guide,

For the outside region we find then that

e (2.29)

A charge in sign cams in as we keep the same direction for the normal. Carzy-

ing through for A the same transformations as for the corresponding A in
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the inside region we finally get

62

AVYV A U/(s)f -- L s.~'7, - P V (s')-- (2.3o)

and for the scattered magnetic field over the slot outside we find

W e,-r7 33 (2'.31))

DETN:MINATI(1f OF PROPR VOLTAGE

We impose now the boundary conditions on tangential H in order to get a

condition on the arbitrary voltage distribution we assumed. This will detemine

the voltage distribution we are seeking. Tangential H is continuous through

the opening. Hence

0(2.3)

Tere H 0 is the magnetic component of the incident unperturbed field.

Substituting for H s  from (2.27) and (2.31) we get

-+ d I. (.. +__Re

I(a.33)
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Rearranging we get

V* .
RZ

(2-34~)

(2.31')

where

II
To solve this equation we expand the solution in terms 6f powers of x =

By ou z assumtion of a very narrow slot we have kd a 1- , so
In 2w is a large number, Hence r is a small number, and expanding

the voltage we write

l e n2alr

30



with the boundary condition that i(+e) a o. lI general, it will be suffi-

cient for our approximation to take the first term that is different from zero.

Substitutin, (2.35) in (2.34) we get

0 0('e
-- f/ i -I---. " _f ),r ( +}

(2.36)

This gives us a set of differential equations, with boundary conditions, for

the determination of successive approximations for the induced voltage. The

values we see are functions of the unperturbed exciting field HO and the

function (C') r) . This is a rather complicated fanction of both the volt-

age and the geometry of the slot. Later we shall investigate this function in

detail.

A SLOT CV LENGTH & 7

For such a slot we find that the solution for V0 which will satisfy the

boundary conditions is

< { ,Sk ,' T for n even

fCo S or n odd (2.37)

It is to be noted that in this case of a resonant slot, the functional varia-

tion of the dminant cmonent of the voltage will be sinusoidal across the



U0

Slot, regardless of the form or coiposition of the exciting field H0 .

We note however, that the first equation in (2.36) does not tell us any-I thing about the amplitude, which is a major thing we ar- attempting to find.

Hcwever, to get the amplitude w can utilize the particular boundary conditionw

of this perturbation method. Let us multiplvy the left side of the second equa-

tion of the system (2.36) by Vo and integrate from- A to. ? . We have

Integrating both terms by parts we get

Ni U now that

) ) o.and

by bondary conditions, we find that Q - 0

Let us then multiply the right side of the second equation in (2.36) by

V0 and integrate over the interval[1., * At J with the result that

J Car0 (2.38)

An is a homogeneous function of lst degree in Vo( ) we have

/'CO



and Tn. get frcu (2.38)

- -.. (2.39)

Hence we see how to determine the amplitude of the excited voltage Vo as a

function of HO and Yn

. (2.40)

SLOT CF ARBITRARY LENGTH

In this case it is obvious that the equation for Vo in (2.36) with the

#boumiary condition Vo(_+, ) = 0 has only the trivial solution Vo( ) - 0

The first term in (2.35) different from zero will be V, (.r ). From the secnd

equation in (2.36), where we note thatt (, Y ) = 0 as K is linear, we

find

Wo~yp7f *(frb) S4~i x) poxL,Ig' )= D', 'C,#'* e J irx r,,Cf+ -; d×(2.1a)

ihere

= y~S/('i-?()dK (Ja(2,.42)
0
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Therefore, for a slot of arbitrary length both the amplitude and distribution

of the induced voltage are dependant on the exciting field. This shows that

the usual assumption that the distribution over the slot is purely sinusoidal
is valid only for resonant or almost resonant slots (2 .. ) In the

general case this assumption is no longer trie.

In the ccming investigation of the scattering by a slot, we shall limit

ourselves to resonant slots. In the nultimode guide we shall also have to con-
sider briefly slight changes.in resonant slot length,, that is, almost resonant

slots. As is seen from (2.40) to determine the implitude Co we have to know
the function Yn. The evaluation of this function i a major part of this
theory, and, an appracndate evaluation will be described in Qhapter I.7
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CHAPTER In

SCATTNG MATRIX OF THE SLOT

Having determined the induced voltage in the slot, Chapter 1, we can
solve now the second part of the boundary value problem; that is, given the
voltage over the slot, find the scattered field set up by it everywhere in

the waveguide. Iet us consider a resonant slot P-6 To compute the

scattering coefficients we apply again the Lorentz theorem. The method is
the same as the one presented in S. Silver's book (6) The expressions are

rewritten here simly for convenience, and 'to make the derivation of the scat-

tering coefficients complete.
Consider a waveguide with a slot along its generating line.

In this waveguide we separate out a region of space bounded by the walls

(assumed to be perfectly conducting) and two cross sections at z wz, far e-
nough from z - 0 so that only the propagating modes are of a significant am-

plitude, (see Fig. 6). This is a source-free region and we have the following.
given two fields of the same frequency (EH) and (E' ,H't) hat satisfy Nakmells

equation,

4r/) ddor 0 (3.)

Since both E and E' are solutions of Maxwell's equations, they satisfy

the boundary conditions on the walls.

nx E =0 ; nxE' 0

thereft e, the integration over the walls will not contribute to the integral
in (3.1). We are left with an integration over the slot and the two cross sec-

tions at z z, and z

That is,

Jo0( C ,J O=J



We choose now for the field (E,H), the combined field in the waveguide

due to the incident wave and the scattered waves due to the slot. For the

field (E',R'), we choose a particular unperturbed characteristic mode that

will give us the desired scattering coefficient.

For the integral over the cross section at z w z, in (3.2) we have for

TE modes

Suppose now that the incident field is one particular mode of unity ampli-
tude, aind that S is the scattering coefficient of the slot. Siv gives

the scattering into mode v due to mode i incident. From the definitions

in Chapter I we can rite for the components of (E' ,H') at z - z' the fol-

lowing expressions

(3.14)

These expressions give the Tno mode with th . proper normalization as

indicated in (i.5) and. (1.6). For simplicity let us define a quantity

pn(x) so that

/JI (3.5)
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and rewrite (3.4) in the form

.(3.6)

With this notation, and in view of (1.9), we will have for the field

(E,H) the folowing

I (3.7)

Substituting these expressions in (3.3) and carrying out the algebra, remem-themodes (6)'
bering the orthogonaLity of the we getIS" (3.8)

-- and as we find

eln (3.-9)

If we can-y tfrough the saxe computation at z z,2 we will find that

the integral Iz will be zero, as all the waves propagate in the same direc-

t3on.

S -- -- *- - - -



We have to compute now the value of the integral over the slot. Here we

have

(4A A- (~4]xd.(.)

By the boundary conditions on the unperturbed auxiliary field, we know

that E O - 0 and E' a 0. By our approximation for a narrow slot we can

neglect E in comparison with E and we get

s= Jf (7j) (x)edc/ (ln

On the basis of the assunption of a narrow slot we can neglect the varia-

tion i:a , () over the width of the slot and write

I~~~~- ((dZPX) ,(.2

where

-Xd

In Chapter II we have seen that, for a slot of a length equal to half

free space wavelength, we 'have for the voltage across the slot, from (2.40)

where the form coak w is independent of the particular configuration of the
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acciting field. The amplitude, on the other hand, is a fmctLon of the excit-

ing field and is given by equation (2..39). Hence

Substituting in (3.15) we have

CO O \d ,A os .A
1! as L='~ we have AV=: and we get

o btl utn ( (x.) (3.15a)r 5fbatituting (3.l14) in (3.12) we find

X) C. dj(3.16)

Nwby. (3 a)

, , s  =0(3..17)

and substituting (3.9) and (3.16) in (3.17) we find
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. . i ..................... . ,

VIV V

Ofti)-($)J(3423)

In (3-23) DOft) -S]is the determinant of the matrix -(S')] and

fei is the cofactor(l9)lof the element (iv) of MY

We see that the impedance in (3.g22) have a well defined meaning only ifle-1) -(S)]

in a non-singular matrix. The case -where/(7) - (5)] is singular would cor-
respond to the conditions of self osc!llations iri the mode coupling structure.

In expression (3.21) all terms buy y. are r eal. Therefore. the phase
of the scattering elements will be determined by the phase -of yn". Our next

step in the theory will be the evaluation of 7n"

-lj:L-



CHAPTER TV

EVALUATION OF THE ADMITTAnCE FUNCTION

In the preceding three chapters we have outlined the solution of the

boundary value problem in its two parts, We have derived an expression for

the induced sources eq. (2.40) and the scattering coefficient of a slot

eq. (3.21). In both expressions the function ) '( ). J that is defined in

(2.39) enters. For a solution in closed form, directly applicable to nimeri-

Cal computation and practical design, we have to evaluate this function. We

rewirte (2.39) for

t

where (see eq. (2.31')

let us first recognize the nature of the function Yn. By (2.39) we have
for the amplitude of the induced voltage as a function of the exciting field

I& the expression

We can represent the tangential magnetic field by an equivalent electric

current. In order to demonstrate -the nature of Yn it is convenient to con-

sider for a moment that the slot is center fed by a Dirac delta function

source. From general network theory (Duhamel's Integral) ir know that the

response to this kind of driving current can be defined as an input admittance.
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We apply then, at the center of the slot, a driving field o the form

Substituting (4.4) in (4.5) we find that the amplitude of the induced voltage

is

d-7.

We see, therefore, that in terms of circuit analog.es the function -Ym takes

the role of an admittance function. It is important to note that as would

then be an impedance function, and Re( -) would be the radiation resistance-T-M

of the slot,,

In evaluating this function let us divide the treatnent into three parts.

We shall evaluate each one of them separately. Ie write

- YM= /," A 'P A(14.6)

where br (1.1) and (4.2)

and

-~ (14.8)
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and

Y J /4 ~I d (4-9)

These functions depend on the geometry of the slot and the geometry of
the waveguide. Until now we have not restricted ourselves in order to leave

the theory in as general a form as possible. To evaluate these functions ex-

plicitly we have to speciif these factors.

We consider a longitudinal slot of length 2 e that is equal to I
-2.

where I is the free space wavelength of the exciting field. Further, we

consider a rectangular guide that can propagate only TEno modes, and the

slot is cut in a broad face of the guide (see Fig. 6), parallel to the iss

of the guide. With these assumptions the coordinate ; will coincide with

the coordinate z of the guide. If we put the center of the coordinate sys-

tem xyz so that the center of the slot is at z = 0, we need not distingaish

between and z anymore. It is to be noted that these assumptions p,.ay a

role mainly in computing Y2  and Y3" As we shall see, Y1  is independent, of

guide geometry. This is to be expected as it is determined by the unperturbed
Green's function of free space, (see Chapter II).

Let us first consider the function Y1. From Chapter II we have for U

-. I)

We make now some simplifying transformations. Let us re-state the assumption

that the slot is narrow. With an error of order kd<<l -ve can write from

(2.19)'

This is equivalent to saying that we shall integrate along the center line of

--



the slot. In doing so we are bound to pass a singularity point at z z.

For this reason we had to take the integral in (2.17) in the principal part

sense. With the assumption (b.31) we can write

Substituting (4.2) in (4.10) and noting the signs we get

4 )e ((4-13)~

We have to compute + hoever, we note that by the sepera-

tion in (4.13) both integrals are regular, and we can interchange differentia-

tion with integration. Also note that -e differentiate with respect to z

and integrate with respect to zt. Carrying out the differentiation and re-

membering that by bnundar-j conditions we have)0-4 -'O we get a convenient
expression for 2f(.)si *" nToting ftrther that in our case we have f)=q
and that R P O , we finally get the rather

simple form

(4-13)

Substituting (4.) in (4.7) we get

*Particulars on this transformation are given in appendix (2).



W - + / '  .... . (1 'l

where /

In our case 2 - we have k -. We can write therefore

cos ks-sin k (xr,z).sin k (A-z)

Changing variables, by substituting k (U + z) - t in the first part of

(4.15) and k - z t, t in the second part of (4.14), we can rewrite Y1  as

follows

(4.16)

but

substituting now 2t - x we find

6Y D,- Z ,r) - j(27
(4.17)

Fro (14.16) and (lo17) we find, substituting the value of q and k , -_

(c velocity of light),
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vhere Sj(z) and Di(x) are the sine and cosine integrals, that is

and D~ X~f4t

I,-

Considering only the resistive part we can see that Y1 corresponds to

the result usually employed for the admittance of a f slot(6,9)o The value

empl1ed is the external impedance of a slot in a perfectly conducting plane.

For this parb of the radiation resistance of the slot we have from (4.18)

S C.ZTr (4.19)

Now., for a half wave complementary wire antenna we have

-d v =' (A- I.O3n (4.20)

CMTs ring (4.20) and (4.19) it is evident that

-47 -



(4~.21)

We see now that Y1 gives us a value corresponding to the slot as an

analog of its complementary wire antenna. It can be considered as the first

approximation in our theory. The other terms Y2 and Y3 of (4.6) will give

us correction terms to add to this first order approximation. Let us now con-

sider the term Y2

Frum (4.8) we see that to determine Y2 we have to find the function

R P ) . By the discussion in Chapter II and equations (2.26) and 2.13)
ve have

rt 11(VYJ =J '14./(,-e)4 (4.220)

elre thfunction/, 4  o is the one introduced In (2-13). As indicato.td... ... Ir, ()."- J# I .. ..
before, finding an accurage expression for gi would be a very difficult task

in itself, We are interested in Y7 as a correction to the basic term YI,

and one which will enable us to take accoamt of the difference between the ra-

diation fields in the interior and exterior regions. This difference was point-

ed out before, and one should expect it to be of importance in the phenomena.

With this in mind we look for an approximate expression for gi(z,z9).

To find an approximate expression for gi let us note that we can easily

find the areen's functions for the insie of a cylindrical waveguide in terms
of an infinite series. We can write for the Green's function ( 3 )

(4.23)

The functions & (X,y) are the eigengunctions of the equation
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for the particular cross-section of the guide, with the boundary conditions

.o(x C (.25)

corresponding to the case of TE or TM modes. The Cr are the propagation

constants and #,c the normalization constants- of the mode function 9(x,y)
defined so that

(4.Z6)

c~c nWg . (40.1) SMd (2 13) WA .wite

@IM Pe" Oe Y) n()IX ~

-OZ Vr(4.27)

It is well known that the M for all modes from 1 to N, where N is a finite

number depending on the cross section of the guide, will be imaginary. For all

modes of index n > N the (n are real, and they represent non-propagating

modes. Let us now break up the sum in (4.23 into two, and write

z -Z 0'1
Goyll - o f, (X +

(4.28)
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Consider now the asyMtotic form of G(P,P') as the observation point goes to

infinity.

+ eame
+ $ ,x' s cx' -')

41 (4.29)

In the second sumation is real and therefore as z - z' goes up all the

terms go -o zero. We have, 0herefortt , faL away m e

the Green's function becomes

where N is the itumber of propagating modes. Further, let us see -what the form

of G(PP') is for large distances, in terms of the second representations.

We hwve

and as e - j k R  is finite (k is real) the first term goes to zero. Hence we

get, therefore, that

G, (PP') - gi (pp')
00_.,
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coparing (4.32) with (4.30) we see that for large distances

A/ z if

it is seen now how we can find the asymptotio values of g, for large distances.

It should also be noted that this expressioil (4.33) depends on the propagating

unattenuated modes. Referring back to the d.scussion in the introduction of

the question of radiation conditions and far zone fields, we see that this form

brings out this very difference, As we are 1looking for an approximation, the

simplest assumption would be to take this far zone asymptotic form. This is

an assumption, and it gives us an approximation to the true Green's function.

It is a plausible approximation, and the results support this point of view.

It may be worth pointing out here that the gi(P P') as chosen makes
G(PP ) satisfy condition (2 .lOa) (a.10b) ald (2.10d). If it would have made

G(PP') satisfy (2.10c) too, everywhere it Would be the rigorous gi(P,P').

Hxrever. it makes G(PP') satisfy (2.10c) Only on the wall in which tha slot
is rat, aad everwher at a distance from the slot of the order of several
wave2.ths. Although the order of error irolved is not shown mathematically,
on the i'c-S of these arguments, it is belie'ved to be appreciably smaller than
the correction represented by the gi(P,P') which is used.

On the basis of this g -we can now fth P . rom (4.22),
noting that for a narrow slot (x,y) and ' (xtyt) are essentially the e

we have

pl-lif-0 , 9? 01 71_f

-.,e

To find Y2 we have to compute Pi + K2P i . We have to differentiate this

expression twice with respect to z (integration with respect to z?). The

only part depending on z is the integral irT (4.35). Carrying out this compuz-

tation* me find

*Particulars on this transformation see in Appendix (3).
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fI(e e 0
- t (14-36)

Hav.ing computed this we can n find the value of Y2 to within this apprcxi-

mation. By (4.8)

e A (14-37)

-1 .,zJ p ' $

Hence we have

>~zZ e~/s4~ c~ p(14.38)
From this, after some simple algebraic transformation, we find

As we have considered t.he case of a rectanguilar waveguide of sides 'a2

and 'b' and such that only T~n modes propagate we have
/ 4

Substituting this., and and , we f ind

finally for Y

<x,,</ ~ ~ ~~5 : ,,,:¢-<.o



4o2 /" ZTX

This Y2 can be considered as the internal admittance of the tlol It in..

deed gives the response of the slot in its relation to the prcqagit.nr, modes.
As we pointed out before, Y2  give, a correction term fo,, thhv admIttance.

We note from (4.41) that it depends on the coordinate x through c.72 n'x._ 0a o
That tells us that as the slot is moved away fron the wall x = 0 , the cor-a f

rection term decreases and finally at x E disappears. This it* to be ex-.

pected ar it is well known that the coupling of the slot to th propagating

T-o moda goes donn as the slot approaches the center. At ihe centar the slot

effectively does notse the far zone field in the guide.



bI FRIVng cciiputed Y2  apprcadmately, Jet us now find Y. o theC M18 r
,C approximation. Fromn (4.9) we see that to find Y3we must know tUja into

A By' (2.29) and (2.30) ve have

g8(PqP') is dsaii"lUnS 42). For the outsi*i region we havs

4443

ti"w') on the walls of the 1e':7 ,r~hwevery :L4, rev
tha \V GO(Pst) 1-m the correct I~xtio~th prvauznab~y can be folid, we L'

~ ~dS.rpoeal the knowledge its a.,3matotic behavior at infii~y. Byr tihe
3comerI1 olA radiation condiVjtiw,,,, 'tiv k niIw that as T, goes to inrf-iity Ge (1P. V

=;t r to zero at lea~st as !,tt s-t 1,Hence :from (14-41)-'e See. lhat

ask -Jkis
Sa real n e i T:.e

I we are to be satisfiled vzI ifh the sasme ordear of ap roxim.,, ! uset
frthei -wd of tewv-Mp

proz: stotic va"Lae as R's * egethef h~ Ainthis ap-
1 idon 9e(PqP') - 0 an 1e0a
Ild ty eeul we con-

Lat ithi ourapp oxivA t cI

y/I0

'11 (4-44)



It should be pointed out here that if we assumed an infinite plane out-ij,,
thesvegde C o 'N t &o~ G ,n f In tion for the outside region would be

I -jkRGe(PSp,). Ir- 10

R'

Therefore e(PPI) wo,0.d rigorously be equal to zero. This means that
with such an assumption v3 0 T .goe.ly. Hence we see that assuming an

infinite p3ane outside shotid yi, '.d the salie results as obtained within our
approximation. From this discussion is also evident that adding finite

wings (plane) to the outsid& walls wo.d u'Lke the appr____at__ --

th~e assu tion that ,- to the physical condition.

In part-iculr -I.a would be observed if the slot were near the edge

ofthede wall,, as the hange in geametry occurs near the source point.
iact has been obser7ve.d I,, ur expero 7eazally. We found little difference

ii s 1oig as the ulot was not at the vory e e,

edge there was a noticeable difference i:n the scattering as measured inside.

For experimrental reasons we had to have the slots at the edge of the wall,

and therefore decided to add small wings to the wall of the waveguide as a

plane conductor.

From (L.6) we can now, by adding (4.18), (4-1) and (4.409), write the

function Yn in closed form.

where

G= . 7 (-6

and

3 - q-
(, .4 ) (4-47



In (4,46) and (4.47) we substituted e . These e: ression rressons re

eL-i y evaluated as they involve only a finite summation, In later chapter

we s? ll see the numerica values in a double mode guide.

It should also be pointed out here that the function Y (or a half wave
slot within our approximation is independent of the width of tfre -,lot for rela-
tively narrow slots (see Chapter II). This is ture ithi-n th sP

for a half wave slot only. As can be seen from (2.f1) and (/ /., apo .aot
), .35 or a slot

of arbitrary length the induced voltage will be proportionv to
If one evaluated the function Y. for a slot of arbitra ,- to u"* ."le ngth one would
-v d that Yn too would depend on the width d. The /

-ct that the function
"ve slot is insensitive to the width "

ft- ) s well demonstrated by
our experimntal
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CHAP R V

SCATTUING nI A 1XJN3L MOV# GUIDE

If we owistitute expression (11.46) sind (h.47) in (3.21) we obtain an ex-

pression for the scattering coefficient in closed form

3O-Y 0/,77,Tty.4#a~ Coso -~-Cs jI

- (5 .-,L 1

This expression is readily computed. However-, it would be wortwhl.. to ccm-

p,.,t4. t.e, fu, in,,4 -n v spr ly or case of a double mode guid rt

1(maugnar guide that can propagate the TEjo and TFO modes has been investigat-

ed experimentaCsl *)° Most of the experimental data have been taken from the

work reporteAd "- this Laboratory before(17,18)

Let us consider the values of (4.L6) and (4.47) first in a waveguide of

dimensions a - L,.064 c9 b m 1.016 cm. The operating frequency is 9375.106cpos.,

which corresponds to a free space wavelength of 3.2 cm. The length of the slots

was 1.6 cm. The slots of varying width were cut at different distances

from the edge of the wall. It was found that the cross coupling betyeen the
modes io5-rath, sm-all. M get --- e data within the ex-perimental erors of

the system, it is necessary to take measurements ith slots very close to the

edge of thew all. This is the case for which we therefore prbpose to do the rnu.-

merical work. For this case we have x = o or a, and cos - 1MTx 1. For aa
wavelength of 3.2 cm we have

k 2' 1 = .962 =n.-1 (5.0)

,-" 1.21 (. .3)

and
I -. 2 =71:-  (5.4)
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The sum in expression (4.46) and .40 has two terms, due to the TEl 0 and

T O modes. Let us compute them separately for the sake of clarity.,

The first component gives for the real part

,na for the imaginary part

after the arithmetic we get

0,0866 + jO,710 (5.5)

The second component gives for the real part

eV.06-11.016 96e~3

and for the imaginary part

This given

0,664 + jO.979 (5.6)

Hence we find for the sum in (U.46) the value of 0,752 and for the sum in

(L.4 6 ) the value of 1,69. From tables for the sine and cosine integrals w20 ) e
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find that Pi(2yr) - 2.44 and Si(2W) - 1,417. Substituting these values in

(4.46) and (4.47) we get

G = /e4 - ,r) 1.69 (5 .7)

o - 7r4- .I. /20 1 Vd

and

13 W /7- /.Gs) 0' 2 73/O7T 
(5.8)

Hence
t I, o i~ 4 ~3,, (/.9 - . 73)

(5.9)

As was pointed out in Chapter IV, this function represents theaiittance

of a center fed slot. Its inverse would then give a function representing an

input impedance defined on the sam basis

z I. -9 -jo'. iao3(o.s +jo.o (5.0)

Numerically this gives us for Z

Z - 681 + jilO ohms

which indicates agreement v& th measured values for the radiation impedance of(16)
center fed slots (

It should be noted from (5.5) nd (5.6) that the contribution to the cor-

rection factor is mainly due to the second mode. A close look at (4. 4 6) and

(4.47) will indicate that for an arbitrary number of modes only the last one

will contribute appreciably to Y. This is due to the fact that the propaga-
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tion constint of the lower modes are very close to k, The cosine and sine

approach . and v as P -Pk. On3,y for the higher modes is . aprecia-
2

bly different from k, and the correction terms are of importance. This al-

ready indicates that as far as the slot's behaviov is concerned it effective-

ly sees only the higher mode.. This phenomena will be further demonstrated by

the reflections from the slot.

By the expressions (3.21) and (5.10) we can now rewrite (5.1) in the

form

/axl' -, 6 R-v/,

For slots at the edge of the wall Cos = & and the dependance on the
a dn

x coordite drops out. Suppose now that a wave of mode TRIO is incident.

The reflected wave in mode T-O will be:

-4-T 4(o.576+4o.o93) c90(~ o)
4.13 L

Tr1  Nb!t o. e& 576 + oo3) C yA 9/03 9 )(5.32)

4 13 1.803 o, 5 "35

hence

-3
(% l=

The reflected wave in mode TF2o will be
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-- 1-SX-e:. 0. I'as .e 4S5 (5.-14)

hence

5ia io ' 5 (!3 + 5e1) )

Let us suppose now that a wave of mode Tli2 is incidenxt on the 81ot..

The reflected wave in mode TRIO is incident. This symetry is evident from

(5.1). Hence

-gl(S (5 .15a)

The reflected wave in mode TE0 will be

"41T .(o.s-r., o.ogs) C6 (-a 9a 0 )

(5.16)

4w. /.e ./0 4.76
SrZ ?- U93)

hence

SZ = /0 - 3 (38?) (5 .17)

As the Eaveguide is matched in both directions Ihe ecattered field to
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the right is the same as the scattered field to the left. Therefore the above

calculated coefficients are sufficient to determine the field everywhere.

To measure the applitudes of the reflection coefficients we reasure the

power of the reflected waves. These are plotted in the graphs in terms of db.

below incident power. For the sake of camparison vith the measured values let

us express the coefficient in terms of decibels. Me get from (5.13), (5.15)

and (5.17) the following values:

. zo ,oo 1o- 3

Sn - 20 Ad l0

u -26.1 db.

S3 - S21  n 20 , 1 9 M-3

- -17.2 .

W 20 385 :LO-3

0 -8.* db.

To ccmpare with measured values let us write them in a table

Caltu.atet dh . . asured db.

Sl -26.1 -27.4 t 1.5

! -17.2 -18.7 t 1.5

$21 -17.2 -19.0 t 1.5

S22-  - 8.4 -10.2 -_ 1.5

From these values we can write now for the matrix (S) of a half wavelength

slot in a rectangular guide the following:
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.05 jO.009 0.14 t JO.02 -0.95 + jO.O09 0.14 - JO.02

0.1 JO.O2 0.4~ t~ JO.o6 0.14 * JO-02 -0.6 O, o06.
(S) (- .. 9 J0.009 O +lI - JO,02 0.05 ,- J±O.009 0.1I t JO.O.

14 JO.02 -0.6 .- JO.-6 0.14 -j0 0.1 JOI.06

We see therefore that the results are, within the experimental error, in

very good agreement. For the phase of the reflected amplitudes we have

. /,: -/ -0.093 /7o30- o.576 /7

We find therefore, that the phase angle is -170. The measured values are
-1590 + 0°,, The agreement in phase is not so good, but it is a characteris-

tic affair in radiation theory. The :phase is sensitive to small changes in res-

onant length. It would be of interest to see the change in the function rn

for slight changes in length.

Slots Very Close To Resonant length

Sbppose that the length of the slot is slightly off the resonant length

,;_ .This may be due to machining errors, frequency errors, or pos-

sibly purposely introduced by the design. Let us denote the length by

Assume the change in length is small, and of the order - - . Let us write,

(5.18)

hence

X -

and

; J-(5.19)

As we assumed a small change let us expand the relevant quantities in a

power series of 6idZ Equation (2.34) will become, after expanding the opera-

tor */ 2 -r -7
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kpaningthe boundary condition 0P~-~ into a Power series gives
us

(5.21)

A s in Chapter II, we look for a solution in terms of powers of x,

(5.22)

Substituting (5.22) into (5.20) we get a set of integro-differential equa-

tions. Tha solution for N(.' is as before, (2.37)

Tb determine the amplitude, as in Chapter II, we multip3y the equation

for V/ by \F and integrate from -. ?9 1 . Instead of its being equal
to zero as in Chapter II, we find now

Intepgating the right side.will give us an ezp-ession for Co . We get

- 64 -



6 4C ~ d ~ (5.25)

'W recolize imediately that thi denoninator in (5.25) is the new aftnit-

tance function. The integral expreasion is identical with the-fmtctAol -Yn

.e have considered in Chapter IV. We see therefore, that the change is only.

in the imaginary part of the admittance. The real part is invariant to slight

changes in length. If we rewrite the reactive part, fron (4.47) and (4),

ve get after, substitution of -,4

Ist us see what the order of reactance change is fram the correction term;

4k .1 .6 Ad F or a slot with a width of 0.030" we have

&md

For a change in 3ength of 0.001" we have, - 2o.4 10- 3 cm. and the

change in reactance is -0.08. Adding this to values in (5.9) we now get

and the phase angle will now be -168O. This is closer to the measured values.

It shouJd be remembered that the accuracy of the measurement of phase is

poor. In addition, from above it is seen that the phase is sensitive to slot

length, and hence to frequency changes. For examle, a change of 5 Mc.p.s. in

10.000 represents a change of the order of 0.001" in terms of slot length.
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Further, the theory neglects the effects at the edges. We have neglected
, )(in comparison with E ), but at the edges of the slrt ,

goes to zero, whereas' E (",. T) is the component that does not hav. to disappear

there., As we have seen that the phase is rather sensitive to the, length of the

slo, we should expect this edge effect to influence the phase ri, sults. A-
othe1tr factor which has been neglected is the finite thickness og' the guide vmll.
To heck the effect of slight changes in slot length, the phase as a function

of equoncy has been measured. The frequency varies over a srall range. arowad

the 1.co..vect" frequency of 9375 MC. The results are plotted in Fig. 9. It

ca- be seen from the experimental curve that for slight changos In -frequency,

thre are rather appreciable. changes in phase. With all these factors in mind
the agreement in phase between the theoretical and experimenf'Al results is
ra',2dr good.

W~tvso of the 1 2erimenta-

The experimental set up has been described before ( 1 6 . A schematic dia-

gram is shown in Fig. 10 * The principal unit ista mode transducer, designed so

a ; to excite separately and independently either mode Tlio ormode TO in, , ,pape(17)
Ze double mode guide. In a former paper we have shbvm the validity of

,masuring the scattering coefficient through such a tramaducetr. This has been

,Aokru to be true only if the transducer is rmatched in erery direction. Any devi-

ation ffrom the match will result in experimental error,. This sensitivity to

-a matmh in four ways results in a system which is rathar froe.nc ' .M

Athoug ;h care was taken in the matching work,, the, . the ..... yst .. . r
limited. The measuring equipment ,,Rp _1,,,'a would "ie'A C11 in* e.dr~sD %,a'.. r. ..

amplitude and 5 degrees in phase. We 1,1ie i ow'4 fl 7r, that the accuracy
in amplitude is only within IS, db and the phmse erors are about 15 degrees.
The reliability of the phase mecamas'ments, in partiolari, is below what might

be considered desirable. This is due to the sensitivity of the system to the

joints in the microwave plumbinz, nd the fact that the veasuring procedure
required moving these joints. Th e limination of cables, and the use of wave-
gides with rotating joints has izr ved that pvre considerably. The waplitudes

and phases were measured in two was.'. In the reflected wave region the method

employed was the Voltage Standing W= Ratio, and in the transmitted region, a

uic T bridge with a coqpenzatink attenuator and phase shifter for balancing

6- 6
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I/

were employed. It ah % pointed out that the techniques for measurir in
be del idesdare 4 A at the beginning of their development, and need to

p ~~cocluionB, //'I

From th / investigation we can conclude that, for the particular ease of
aslot para lel to the axis of the guide and located on the broad fac of the
guide in / rectangular guide propagating the T-0 and m des a lot

of II s mainly with the higher mode. This ill be the case for any rnnberof
es. if a slob is to be used as a radiator, the mode to launch in the

6 ! !i, the highest one possible. This will gi.. the ",iu radiation power.
F e- expression (5.1) ilt, can be seen that the rason fEc thbehavir %.s -the

t. ta t the guide wa viength fJor lower modes is close to the free saice wavre-

1 h The factor Cos t is very close to zero. Realizing that, 1l is avi-

/7 ' ivn that slots could be used as a means of separating the modes.

7/ Although the expressions derived here are for a resonant slot, they indi-

co,0- the behavior of slots in general. We have seen that for small clhges in

/,,i gth the resistive part is invariant. It can be safely assumed thp't the

,' ~ gpneral character of slots of length not too different, from the resonant length

, o '.' .i 7 ,t h 7 ciably different from *at we found for the retsonant length.

,, UOWs cn Zmit id suclh a length of longitudinal slot that will interact with

: ,), . oce only. As such, these slots wouLO1d serve as mode separators.. 1-ne could

also have two slots arranged so that one tnteracts hith one mcde and the other

with the second mode. This could be applie:d of course, to ar-,, ntuber ')f moose

and slots. Such m arr-ngement will serv,,e as a laun'cher, or a receiving filter,

for a multiplex ystem. Every mode can be zade to carry another mesvsge in the

same waveguide.

From the theory developed here we can arrive at some idea for in'estigating

scattered fields in general. The major parit of the information is derivable

from the singularity of the source functione From the theory of functions this

is to be expected. Nevertheless, this way cf attack has 1een neglected in com-

parison with the modal expansion method. Tho . all expansion method aan claim

\ . more rigour in writing out a, formal solution. If no rec,.urse is taken to approxi-

mation procedures, it gives a solution in terms of infinite series. In most

caes' the convergence of these series leaves mu~h to be desired. It would probabb'
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be fruitful to investigate the region of singularity first. For electromag-

netic fields the singularity of the source functions is well known, and its

location is in the region of integration. Separating it out, and treating

it separately will give the major part of the wanted information. The special

nature of the region of interest can then be introduced as a correction, or a
refinement of the information derived from the singularity.

Suggestions for Further 1esearch

Several problems amenable to treatment by the outlined method present
themselves. In principle there is no difficulty in extending the method pre-
sented here to slots of arbitrary lengdh. It will involve a more complicated
integration, but this could be evaluated either approximately or rigorously.

One would also want to know in detail the behavior of slots at an arbitrary

angle to the direction of propagation. Another important problem in the de-

sign of slot &rrays is the interaction of adjacent slots. With the expressions

for the voltage induced in a slot by an arbitrary exciting field this problem

could be solved without much difficulty. A class of problems of a little dif-

ferent nature are diffraction problems in free space. It would be of interest

to apply the outlined method to the problems of diffraction.
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FIG. 41
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APPENDIX 1

In the transformation leading to equaion (1.18) the following is required.
Lfre-x .0

-4 -4 ), (Al.1)

Referring to (1.17) and (1.18) we get

T .// P A_ A
A, )'r Ote(Al.2)

Consider the first term under the integral. For the cross prodmct of the

vector mode functions we have from (1.8)

JJ x k yo dy Jf/(Y 4 - it,~)~y

d, x ay -

With similar substitutions we find for the second term in (AI.2)

Adding these two we find that

7 (Al.3)

In a similar fashion one can find that when direction of normal vector
is reversed, we get for the integral over the cross-section theslue of (-a).

With the help of such relations the indicated evaluation iza Chapter I can be

carried out.
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APPfEIX 2

To compute the transformation from (4.13) to (4°14) consider the expression

Each of the two integrals in (A2 .1) is regular, and we can differentiate them

as functions of z, We have

and we have to evaluate the integrals in (AZ-2). For this purpose we introduce

transformations as follows:

(a ;> ~ 4u )

and note that

4) 7 -
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Turther denote

ejk(z,.z) - r1 (fZl )

a jk(zl-z) a f,(~t

and note that

(A2.6)

Also eubstitute

* ~dd~'~ YI,~d'(AZ.)

We canf write no

where

and
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Consider I

4, Pv zeA + a/ 0

Bu (AZ-4) and(A2.6) we can rewrite this in the form

~d

r,4"C- - a 4 e" p ~ , ) i

4. (A2 .1A.)

The first and third term can be taken out of the intagil directly. The

second term we integrate by parts. Thus we get

I., o -Al (u4, RUZ, e0

In a similar fashion -, can treat 12(z). Ite then get

Substituting back from (A2.3)v (A2.5) and (A2.7) and # (ze)J 0 we find

that
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e2 A- ?'ekAr.,0'AeP

(A2.14)

In? our' case we have

(A2,.15)

hence

e (AZ.16)

and

Further in our case

-r L 9 /.'fy' a,?'~'~" i "(A2.18)

and
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Substituting (AZ.IO) to (A2.19) in (A2..14) and adding the integrated
terms from (A2.2) we find

I (A2 .20)

which is expression (4 4) used in text.
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APTMMhX 3

The transformation from (4-35) to (4.36) involves computation of the ex-

pression

where

(A3.2)

To compute this we separate the integral into +,m parte and write

Each of these two integrals can be evaluated dULrectly. We have

- J. ._ I

Further

.J ,. ,, , ,

-e z2

_43) -j 
JJ -~ ~C03

(A.5



I 

A, cl

1g~3.24) and (A3.5) and substituting in (A3.3 ef~r

rot , rjl7 po

(A3.6)

Thiff can Im q 0' '

I,

Sim y ad ing up the terms will give uci

iv ,tS(X~) *F' /(Ai3.8)

Which is the expression given in the text,

i8 -

/

, /
/

'4
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